\(\int \frac {\sqrt {g \cos (e+f x)} \sin ^2(e+f x)}{a+b \sin (e+f x)} \, dx\) [1372]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (warning: unable to verify)
   Maple [C] (warning: unable to verify)
   Fricas [F(-1)]
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 33, antiderivative size = 369 \[ \int \frac {\sqrt {g \cos (e+f x)} \sin ^2(e+f x)}{a+b \sin (e+f x)} \, dx=\frac {a^2 \sqrt {g} \arctan \left (\frac {\sqrt {b} \sqrt {g \cos (e+f x)}}{\sqrt [4]{-a^2+b^2} \sqrt {g}}\right )}{b^{5/2} \sqrt [4]{-a^2+b^2} f}-\frac {a^2 \sqrt {g} \text {arctanh}\left (\frac {\sqrt {b} \sqrt {g \cos (e+f x)}}{\sqrt [4]{-a^2+b^2} \sqrt {g}}\right )}{b^{5/2} \sqrt [4]{-a^2+b^2} f}-\frac {2 (g \cos (e+f x))^{3/2}}{3 b f g}-\frac {2 a \sqrt {g \cos (e+f x)} E\left (\left .\frac {1}{2} (e+f x)\right |2\right )}{b^2 f \sqrt {\cos (e+f x)}}+\frac {a^3 g \sqrt {\cos (e+f x)} \operatorname {EllipticPi}\left (\frac {2 b}{b-\sqrt {-a^2+b^2}},\frac {1}{2} (e+f x),2\right )}{b^3 \left (b-\sqrt {-a^2+b^2}\right ) f \sqrt {g \cos (e+f x)}}+\frac {a^3 g \sqrt {\cos (e+f x)} \operatorname {EllipticPi}\left (\frac {2 b}{b+\sqrt {-a^2+b^2}},\frac {1}{2} (e+f x),2\right )}{b^3 \left (b+\sqrt {-a^2+b^2}\right ) f \sqrt {g \cos (e+f x)}} \]

[Out]

-2/3*(g*cos(f*x+e))^(3/2)/b/f/g+a^2*arctan(b^(1/2)*(g*cos(f*x+e))^(1/2)/(-a^2+b^2)^(1/4)/g^(1/2))*g^(1/2)/b^(5
/2)/(-a^2+b^2)^(1/4)/f-a^2*arctanh(b^(1/2)*(g*cos(f*x+e))^(1/2)/(-a^2+b^2)^(1/4)/g^(1/2))*g^(1/2)/b^(5/2)/(-a^
2+b^2)^(1/4)/f+a^3*g*(cos(1/2*f*x+1/2*e)^2)^(1/2)/cos(1/2*f*x+1/2*e)*EllipticPi(sin(1/2*f*x+1/2*e),2*b/(b-(-a^
2+b^2)^(1/2)),2^(1/2))*cos(f*x+e)^(1/2)/b^3/f/(b-(-a^2+b^2)^(1/2))/(g*cos(f*x+e))^(1/2)+a^3*g*(cos(1/2*f*x+1/2
*e)^2)^(1/2)/cos(1/2*f*x+1/2*e)*EllipticPi(sin(1/2*f*x+1/2*e),2*b/(b+(-a^2+b^2)^(1/2)),2^(1/2))*cos(f*x+e)^(1/
2)/b^3/f/(b+(-a^2+b^2)^(1/2))/(g*cos(f*x+e))^(1/2)-2*a*(cos(1/2*f*x+1/2*e)^2)^(1/2)/cos(1/2*f*x+1/2*e)*Ellipti
cE(sin(1/2*f*x+1/2*e),2^(1/2))*(g*cos(f*x+e))^(1/2)/b^2/f/cos(f*x+e)^(1/2)

Rubi [A] (verified)

Time = 0.59 (sec) , antiderivative size = 369, normalized size of antiderivative = 1.00, number of steps used = 15, number of rules used = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.364, Rules used = {2977, 2721, 2719, 2645, 30, 2780, 2886, 2884, 335, 304, 211, 214} \[ \int \frac {\sqrt {g \cos (e+f x)} \sin ^2(e+f x)}{a+b \sin (e+f x)} \, dx=\frac {a^2 \sqrt {g} \arctan \left (\frac {\sqrt {b} \sqrt {g \cos (e+f x)}}{\sqrt {g} \sqrt [4]{b^2-a^2}}\right )}{b^{5/2} f \sqrt [4]{b^2-a^2}}-\frac {a^2 \sqrt {g} \text {arctanh}\left (\frac {\sqrt {b} \sqrt {g \cos (e+f x)}}{\sqrt {g} \sqrt [4]{b^2-a^2}}\right )}{b^{5/2} f \sqrt [4]{b^2-a^2}}+\frac {a^3 g \sqrt {\cos (e+f x)} \operatorname {EllipticPi}\left (\frac {2 b}{b-\sqrt {b^2-a^2}},\frac {1}{2} (e+f x),2\right )}{b^3 f \left (b-\sqrt {b^2-a^2}\right ) \sqrt {g \cos (e+f x)}}+\frac {a^3 g \sqrt {\cos (e+f x)} \operatorname {EllipticPi}\left (\frac {2 b}{b+\sqrt {b^2-a^2}},\frac {1}{2} (e+f x),2\right )}{b^3 f \left (\sqrt {b^2-a^2}+b\right ) \sqrt {g \cos (e+f x)}}-\frac {2 a E\left (\left .\frac {1}{2} (e+f x)\right |2\right ) \sqrt {g \cos (e+f x)}}{b^2 f \sqrt {\cos (e+f x)}}-\frac {2 (g \cos (e+f x))^{3/2}}{3 b f g} \]

[In]

Int[(Sqrt[g*Cos[e + f*x]]*Sin[e + f*x]^2)/(a + b*Sin[e + f*x]),x]

[Out]

(a^2*Sqrt[g]*ArcTan[(Sqrt[b]*Sqrt[g*Cos[e + f*x]])/((-a^2 + b^2)^(1/4)*Sqrt[g])])/(b^(5/2)*(-a^2 + b^2)^(1/4)*
f) - (a^2*Sqrt[g]*ArcTanh[(Sqrt[b]*Sqrt[g*Cos[e + f*x]])/((-a^2 + b^2)^(1/4)*Sqrt[g])])/(b^(5/2)*(-a^2 + b^2)^
(1/4)*f) - (2*(g*Cos[e + f*x])^(3/2))/(3*b*f*g) - (2*a*Sqrt[g*Cos[e + f*x]]*EllipticE[(e + f*x)/2, 2])/(b^2*f*
Sqrt[Cos[e + f*x]]) + (a^3*g*Sqrt[Cos[e + f*x]]*EllipticPi[(2*b)/(b - Sqrt[-a^2 + b^2]), (e + f*x)/2, 2])/(b^3
*(b - Sqrt[-a^2 + b^2])*f*Sqrt[g*Cos[e + f*x]]) + (a^3*g*Sqrt[Cos[e + f*x]]*EllipticPi[(2*b)/(b + Sqrt[-a^2 +
b^2]), (e + f*x)/2, 2])/(b^3*(b + Sqrt[-a^2 + b^2])*f*Sqrt[g*Cos[e + f*x]])

Rule 30

Int[(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)/(m + 1), x] /; FreeQ[m, x] && NeQ[m, -1]

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 304

Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[-a/b, 2]], s = Denominator[Rt[-a/b, 2]]}
, Dist[s/(2*b), Int[1/(r + s*x^2), x], x] - Dist[s/(2*b), Int[1/(r - s*x^2), x], x]] /; FreeQ[{a, b}, x] &&  !
GtQ[a/b, 0]

Rule 335

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + b*(x^(k*n)/c^n))^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 2645

Int[(cos[(e_.) + (f_.)*(x_)]*(a_.))^(m_.)*sin[(e_.) + (f_.)*(x_)]^(n_.), x_Symbol] :> Dist[-(a*f)^(-1), Subst[
Int[x^m*(1 - x^2/a^2)^((n - 1)/2), x], x, a*Cos[e + f*x]], x] /; FreeQ[{a, e, f, m}, x] && IntegerQ[(n - 1)/2]
 &&  !(IntegerQ[(m - 1)/2] && GtQ[m, 0] && LeQ[m, n])

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2721

Int[((b_)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Dist[(b*Sin[c + d*x])^n/Sin[c + d*x]^n, Int[Sin[c + d*x]
^n, x], x] /; FreeQ[{b, c, d}, x] && LtQ[-1, n, 1] && IntegerQ[2*n]

Rule 2780

Int[Sqrt[cos[(e_.) + (f_.)*(x_)]*(g_.)]/((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> With[{q = Rt[-a^2
 + b^2, 2]}, Dist[a*(g/(2*b)), Int[1/(Sqrt[g*Cos[e + f*x]]*(q + b*Cos[e + f*x])), x], x] + (-Dist[a*(g/(2*b)),
 Int[1/(Sqrt[g*Cos[e + f*x]]*(q - b*Cos[e + f*x])), x], x] + Dist[b*(g/f), Subst[Int[Sqrt[x]/(g^2*(a^2 - b^2)
+ b^2*x^2), x], x, g*Cos[e + f*x]], x])] /; FreeQ[{a, b, e, f, g}, x] && NeQ[a^2 - b^2, 0]

Rule 2884

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp
[(2/(f*(a + b)*Sqrt[c + d]))*EllipticPi[2*(b/(a + b)), (1/2)*(e - Pi/2 + f*x), 2*(d/(c + d))], x] /; FreeQ[{a,
 b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[c + d, 0]

Rule 2886

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist
[Sqrt[(c + d*Sin[e + f*x])/(c + d)]/Sqrt[c + d*Sin[e + f*x]], Int[1/((a + b*Sin[e + f*x])*Sqrt[c/(c + d) + (d/
(c + d))*Sin[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && N
eQ[c^2 - d^2, 0] &&  !GtQ[c + d, 0]

Rule 2977

Int[((cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*sin[(e_.) + (f_.)*(x_)]^(n_))/((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])
, x_Symbol] :> Int[ExpandTrig[(g*cos[e + f*x])^p, sin[e + f*x]^n/(a + b*sin[e + f*x]), x], x] /; FreeQ[{a, b,
e, f, g, p}, x] && NeQ[a^2 - b^2, 0] && IntegerQ[n] && (LtQ[n, 0] || IGtQ[p + 1/2, 0])

Rubi steps \begin{align*} \text {integral}& = \int \left (-\frac {a \sqrt {g \cos (e+f x)}}{b^2}+\frac {\sqrt {g \cos (e+f x)} \sin (e+f x)}{b}+\frac {a^2 \sqrt {g \cos (e+f x)}}{b^2 (a+b \sin (e+f x))}\right ) \, dx \\ & = -\frac {a \int \sqrt {g \cos (e+f x)} \, dx}{b^2}+\frac {a^2 \int \frac {\sqrt {g \cos (e+f x)}}{a+b \sin (e+f x)} \, dx}{b^2}+\frac {\int \sqrt {g \cos (e+f x)} \sin (e+f x) \, dx}{b} \\ & = -\frac {\text {Subst}\left (\int \sqrt {x} \, dx,x,g \cos (e+f x)\right )}{b f g}-\frac {\left (a^3 g\right ) \int \frac {1}{\sqrt {g \cos (e+f x)} \left (\sqrt {-a^2+b^2}-b \cos (e+f x)\right )} \, dx}{2 b^3}+\frac {\left (a^3 g\right ) \int \frac {1}{\sqrt {g \cos (e+f x)} \left (\sqrt {-a^2+b^2}+b \cos (e+f x)\right )} \, dx}{2 b^3}+\frac {\left (a^2 g\right ) \text {Subst}\left (\int \frac {\sqrt {x}}{\left (a^2-b^2\right ) g^2+b^2 x^2} \, dx,x,g \cos (e+f x)\right )}{b f}-\frac {\left (a \sqrt {g \cos (e+f x)}\right ) \int \sqrt {\cos (e+f x)} \, dx}{b^2 \sqrt {\cos (e+f x)}} \\ & = -\frac {2 (g \cos (e+f x))^{3/2}}{3 b f g}-\frac {2 a \sqrt {g \cos (e+f x)} E\left (\left .\frac {1}{2} (e+f x)\right |2\right )}{b^2 f \sqrt {\cos (e+f x)}}+\frac {\left (2 a^2 g\right ) \text {Subst}\left (\int \frac {x^2}{\left (a^2-b^2\right ) g^2+b^2 x^4} \, dx,x,\sqrt {g \cos (e+f x)}\right )}{b f}-\frac {\left (a^3 g \sqrt {\cos (e+f x)}\right ) \int \frac {1}{\sqrt {\cos (e+f x)} \left (\sqrt {-a^2+b^2}-b \cos (e+f x)\right )} \, dx}{2 b^3 \sqrt {g \cos (e+f x)}}+\frac {\left (a^3 g \sqrt {\cos (e+f x)}\right ) \int \frac {1}{\sqrt {\cos (e+f x)} \left (\sqrt {-a^2+b^2}+b \cos (e+f x)\right )} \, dx}{2 b^3 \sqrt {g \cos (e+f x)}} \\ & = -\frac {2 (g \cos (e+f x))^{3/2}}{3 b f g}-\frac {2 a \sqrt {g \cos (e+f x)} E\left (\left .\frac {1}{2} (e+f x)\right |2\right )}{b^2 f \sqrt {\cos (e+f x)}}+\frac {a^3 g \sqrt {\cos (e+f x)} \operatorname {EllipticPi}\left (\frac {2 b}{b-\sqrt {-a^2+b^2}},\frac {1}{2} (e+f x),2\right )}{b^3 \left (b-\sqrt {-a^2+b^2}\right ) f \sqrt {g \cos (e+f x)}}+\frac {a^3 g \sqrt {\cos (e+f x)} \operatorname {EllipticPi}\left (\frac {2 b}{b+\sqrt {-a^2+b^2}},\frac {1}{2} (e+f x),2\right )}{b^3 \left (b+\sqrt {-a^2+b^2}\right ) f \sqrt {g \cos (e+f x)}}-\frac {\left (a^2 g\right ) \text {Subst}\left (\int \frac {1}{\sqrt {-a^2+b^2} g-b x^2} \, dx,x,\sqrt {g \cos (e+f x)}\right )}{b^2 f}+\frac {\left (a^2 g\right ) \text {Subst}\left (\int \frac {1}{\sqrt {-a^2+b^2} g+b x^2} \, dx,x,\sqrt {g \cos (e+f x)}\right )}{b^2 f} \\ & = \frac {a^2 \sqrt {g} \arctan \left (\frac {\sqrt {b} \sqrt {g \cos (e+f x)}}{\sqrt [4]{-a^2+b^2} \sqrt {g}}\right )}{b^{5/2} \sqrt [4]{-a^2+b^2} f}-\frac {a^2 \sqrt {g} \text {arctanh}\left (\frac {\sqrt {b} \sqrt {g \cos (e+f x)}}{\sqrt [4]{-a^2+b^2} \sqrt {g}}\right )}{b^{5/2} \sqrt [4]{-a^2+b^2} f}-\frac {2 (g \cos (e+f x))^{3/2}}{3 b f g}-\frac {2 a \sqrt {g \cos (e+f x)} E\left (\left .\frac {1}{2} (e+f x)\right |2\right )}{b^2 f \sqrt {\cos (e+f x)}}+\frac {a^3 g \sqrt {\cos (e+f x)} \operatorname {EllipticPi}\left (\frac {2 b}{b-\sqrt {-a^2+b^2}},\frac {1}{2} (e+f x),2\right )}{b^3 \left (b-\sqrt {-a^2+b^2}\right ) f \sqrt {g \cos (e+f x)}}+\frac {a^3 g \sqrt {\cos (e+f x)} \operatorname {EllipticPi}\left (\frac {2 b}{b+\sqrt {-a^2+b^2}},\frac {1}{2} (e+f x),2\right )}{b^3 \left (b+\sqrt {-a^2+b^2}\right ) f \sqrt {g \cos (e+f x)}} \\ \end{align*}

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 6 vs. order 4 in optimal.

Time = 12.01 (sec) , antiderivative size = 372, normalized size of antiderivative = 1.01 \[ \int \frac {\sqrt {g \cos (e+f x)} \sin ^2(e+f x)}{a+b \sin (e+f x)} \, dx=\frac {\sqrt {g \cos (e+f x)} \left (-8 b^{3/2} \cos ^{\frac {3}{2}}(e+f x)-\frac {a \left (8 b^{5/2} \operatorname {AppellF1}\left (\frac {3}{4},-\frac {1}{2},1,\frac {7}{4},\cos ^2(e+f x),\frac {b^2 \cos ^2(e+f x)}{-a^2+b^2}\right ) \cos ^{\frac {3}{2}}(e+f x)+3 \sqrt {2} a \left (a^2-b^2\right )^{3/4} \left (2 \arctan \left (1-\frac {\sqrt {2} \sqrt {b} \sqrt {\cos (e+f x)}}{\sqrt [4]{a^2-b^2}}\right )-2 \arctan \left (1+\frac {\sqrt {2} \sqrt {b} \sqrt {\cos (e+f x)}}{\sqrt [4]{a^2-b^2}}\right )-\log \left (\sqrt {a^2-b^2}-\sqrt {2} \sqrt {b} \sqrt [4]{a^2-b^2} \sqrt {\cos (e+f x)}+b \cos (e+f x)\right )+\log \left (\sqrt {a^2-b^2}+\sqrt {2} \sqrt {b} \sqrt [4]{a^2-b^2} \sqrt {\cos (e+f x)}+b \cos (e+f x)\right )\right )\right ) \left (a+b \sqrt {\sin ^2(e+f x)}\right )}{\left (a^2-b^2\right ) (a+b \sin (e+f x))}\right )}{12 b^{5/2} f \sqrt {\cos (e+f x)}} \]

[In]

Integrate[(Sqrt[g*Cos[e + f*x]]*Sin[e + f*x]^2)/(a + b*Sin[e + f*x]),x]

[Out]

(Sqrt[g*Cos[e + f*x]]*(-8*b^(3/2)*Cos[e + f*x]^(3/2) - (a*(8*b^(5/2)*AppellF1[3/4, -1/2, 1, 7/4, Cos[e + f*x]^
2, (b^2*Cos[e + f*x]^2)/(-a^2 + b^2)]*Cos[e + f*x]^(3/2) + 3*Sqrt[2]*a*(a^2 - b^2)^(3/4)*(2*ArcTan[1 - (Sqrt[2
]*Sqrt[b]*Sqrt[Cos[e + f*x]])/(a^2 - b^2)^(1/4)] - 2*ArcTan[1 + (Sqrt[2]*Sqrt[b]*Sqrt[Cos[e + f*x]])/(a^2 - b^
2)^(1/4)] - Log[Sqrt[a^2 - b^2] - Sqrt[2]*Sqrt[b]*(a^2 - b^2)^(1/4)*Sqrt[Cos[e + f*x]] + b*Cos[e + f*x]] + Log
[Sqrt[a^2 - b^2] + Sqrt[2]*Sqrt[b]*(a^2 - b^2)^(1/4)*Sqrt[Cos[e + f*x]] + b*Cos[e + f*x]]))*(a + b*Sqrt[Sin[e
+ f*x]^2]))/((a^2 - b^2)*(a + b*Sin[e + f*x]))))/(12*b^(5/2)*f*Sqrt[Cos[e + f*x]])

Maple [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 2.49 (sec) , antiderivative size = 1002, normalized size of antiderivative = 2.72

method result size
default \(\text {Expression too large to display}\) \(1002\)

[In]

int(sin(f*x+e)^2*(g*cos(f*x+e))^(1/2)/(a+b*sin(f*x+e)),x,method=_RETURNVERBOSE)

[Out]

(16*b*g*(-1/24/b^2*(-2*(-2*g*sin(1/2*f*x+1/2*e)^2+g)^(1/2)*sin(1/2*f*x+1/2*e)^2+(-2*g*sin(1/2*f*x+1/2*e)^2+g)^
(1/2))/g+1/64*a^2/b^4/(g^2*(a^2-b^2)/b^2)^(1/4)*2^(1/2)*(ln((2*g*cos(1/2*f*x+1/2*e)^2-g-(g^2*(a^2-b^2)/b^2)^(1
/4)*(2*g*cos(1/2*f*x+1/2*e)^2-g)^(1/2)*2^(1/2)+(g^2*(a^2-b^2)/b^2)^(1/2))/(2*g*cos(1/2*f*x+1/2*e)^2-g+(g^2*(a^
2-b^2)/b^2)^(1/4)*(2*g*cos(1/2*f*x+1/2*e)^2-g)^(1/2)*2^(1/2)+(g^2*(a^2-b^2)/b^2)^(1/2)))+2*arctan((2^(1/2)*(2*
g*cos(1/2*f*x+1/2*e)^2-g)^(1/2)+(g^2*(a^2-b^2)/b^2)^(1/4))/(g^2*(a^2-b^2)/b^2)^(1/4))+2*arctan((2^(1/2)*(2*g*c
os(1/2*f*x+1/2*e)^2-g)^(1/2)-(g^2*(a^2-b^2)/b^2)^(1/4))/(g^2*(a^2-b^2)/b^2)^(1/4))))-1/8*(g*(2*cos(1/2*f*x+1/2
*e)^2-1)*sin(1/2*f*x+1/2*e)^2)^(1/2)*a*g*(16*(sin(1/2*f*x+1/2*e)^2)^(1/2)*(1-2*cos(1/2*f*x+1/2*e)^2)^(1/2)*Ell
ipticE(cos(1/2*f*x+1/2*e),2^(1/2))*b^2+sum(1/_alpha*(8*(g*(2*_alpha^2*b^2+a^2-2*b^2)/b^2)^(1/2)*(sin(1/2*f*x+1
/2*e)^2)^(1/2)*(1-2*cos(1/2*f*x+1/2*e)^2)^(1/2)*EllipticPi(cos(1/2*f*x+1/2*e),-4*b^2/a^2*(_alpha^2-1),2^(1/2))
*_alpha^3*b^2-8*b^2*_alpha*(sin(1/2*f*x+1/2*e)^2)^(1/2)*(1-2*cos(1/2*f*x+1/2*e)^2)^(1/2)*EllipticPi(cos(1/2*f*
x+1/2*e),-4*b^2/a^2*(_alpha^2-1),2^(1/2))*(g*(2*_alpha^2*b^2+a^2-2*b^2)/b^2)^(1/2)+a^2*2^(1/2)*arctanh(1/2*g*(
4*_alpha^2-3)/(4*a^2-3*b^2)*(b^2*_alpha^2+4*a^2*cos(1/2*f*x+1/2*e)^2-3*b^2*cos(1/2*f*x+1/2*e)^2-3*a^2+2*b^2)*2
^(1/2)/(g*(2*_alpha^2*b^2+a^2-2*b^2)/b^2)^(1/2)/(-g*(2*sin(1/2*f*x+1/2*e)^4-sin(1/2*f*x+1/2*e)^2))^(1/2))*(-g*
sin(1/2*f*x+1/2*e)^2*(2*sin(1/2*f*x+1/2*e)^2-1))^(1/2))/(g*(2*_alpha^2*b^2+a^2-2*b^2)/b^2)^(1/2)/(-g*sin(1/2*f
*x+1/2*e)^2*(2*sin(1/2*f*x+1/2*e)^2-1))^(1/2),_alpha=RootOf(4*_Z^4*b^2-4*_Z^2*b^2+a^2))*(-g*(2*sin(1/2*f*x+1/2
*e)^4-sin(1/2*f*x+1/2*e)^2))^(1/2))/b^4/(-g*(2*sin(1/2*f*x+1/2*e)^4-sin(1/2*f*x+1/2*e)^2))^(1/2)/sin(1/2*f*x+1
/2*e)/(g*(2*cos(1/2*f*x+1/2*e)^2-1))^(1/2))/f

Fricas [F(-1)]

Timed out. \[ \int \frac {\sqrt {g \cos (e+f x)} \sin ^2(e+f x)}{a+b \sin (e+f x)} \, dx=\text {Timed out} \]

[In]

integrate(sin(f*x+e)^2*(g*cos(f*x+e))^(1/2)/(a+b*sin(f*x+e)),x, algorithm="fricas")

[Out]

Timed out

Sympy [F(-1)]

Timed out. \[ \int \frac {\sqrt {g \cos (e+f x)} \sin ^2(e+f x)}{a+b \sin (e+f x)} \, dx=\text {Timed out} \]

[In]

integrate(sin(f*x+e)**2*(g*cos(f*x+e))**(1/2)/(a+b*sin(f*x+e)),x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {\sqrt {g \cos (e+f x)} \sin ^2(e+f x)}{a+b \sin (e+f x)} \, dx=\int { \frac {\sqrt {g \cos \left (f x + e\right )} \sin \left (f x + e\right )^{2}}{b \sin \left (f x + e\right ) + a} \,d x } \]

[In]

integrate(sin(f*x+e)^2*(g*cos(f*x+e))^(1/2)/(a+b*sin(f*x+e)),x, algorithm="maxima")

[Out]

integrate(sqrt(g*cos(f*x + e))*sin(f*x + e)^2/(b*sin(f*x + e) + a), x)

Giac [F]

\[ \int \frac {\sqrt {g \cos (e+f x)} \sin ^2(e+f x)}{a+b \sin (e+f x)} \, dx=\int { \frac {\sqrt {g \cos \left (f x + e\right )} \sin \left (f x + e\right )^{2}}{b \sin \left (f x + e\right ) + a} \,d x } \]

[In]

integrate(sin(f*x+e)^2*(g*cos(f*x+e))^(1/2)/(a+b*sin(f*x+e)),x, algorithm="giac")

[Out]

integrate(sqrt(g*cos(f*x + e))*sin(f*x + e)^2/(b*sin(f*x + e) + a), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {g \cos (e+f x)} \sin ^2(e+f x)}{a+b \sin (e+f x)} \, dx=\int \frac {{\sin \left (e+f\,x\right )}^2\,\sqrt {g\,\cos \left (e+f\,x\right )}}{a+b\,\sin \left (e+f\,x\right )} \,d x \]

[In]

int((sin(e + f*x)^2*(g*cos(e + f*x))^(1/2))/(a + b*sin(e + f*x)),x)

[Out]

int((sin(e + f*x)^2*(g*cos(e + f*x))^(1/2))/(a + b*sin(e + f*x)), x)